

Renewable Energy Databases, Information and GIS Tools

Dave Renné
National Renewable Energy Laboratory

Presented at the 2nd Energy Analysis Forum 29 May 2002

Objective of Talk

Renewable energy databases

+

Emission and air quality databases

+

Geospatial tools

П

Analytic capabilities

Outline

- Renewable energy resource databases
- GIS as a tool for integrating databases
- Examples of value-added products
- Applications to air quality mitigation analysis

Characteristics of Renewable Energy Resources

- Domestic source of clean energy
- Low or no "fuel" cost
- Consumption does not deplete supply
- Vary over space and time
- Rate of conversion generally controlled by amount of resource

Integration of resource data using Geographic Information System tools provides high value to planners and industry

How Assessments are Conducted

- Measurements
- Empirical analyses
- Statistical analyses
- Modeling approaches

Examples of Solar ResourceAssessments

- National measurement programs
- U.S. National Solar Radiation Database (NSRDB)
- Solar radiation data "grids"
- Satellite-derived techniques

National Solar Measurements

		INFORMATION ON NATION	AL AND REGIONAL	SOLAR MONIT	ORING NETV	VORKS	
LOCATOR				N LATITUDE W LONGITUDE START of			
NUMBER	R NETWORK	OPERATOR	STATION NAME	(DEG.)	(DEG.)	MEASUREMENT	
1	CONFRRM	UNIVERSITY OF TEXAS SOLA	DIESTEN TV	30.29	97.74	APRIL, 1997	
2	CONFRRM	UNIVERSITY OF TEXAS SOLA		34.99	101.9	JUNE, 1997	
3	CONFRRM	UNIVERSITY OF TEXAS SOLA		29.57	95.09	AUGUST, 1997	
4	CONFRRM	UNIVERSITY OF TEXAS SOLA		26.3	98.17	APRIL, 1997	
5	CONFRRM	UNIVERSITY OF TEXAS SOLA		31.77	106.5	JULY, 1997	
6	CONFRRM/HBCU	BETHUNE-COOKMAN COLLE			81.02	AUGUST, 1985	
7	CONFRRM/HBCU	BLUEFIELD STATE UNIVERSI		37.27	81.24	NOVEMBER, 1985	
8	CONFRRM/HBCU	ELIZABETH CITY STATE UNI			76.25	SEPTEMBER, 1985	
9	CONFRRM/HBCU	MISSISSIPPI VALLEY STATE		33.5	90.33	JULY, 1985	
10	CONFRRM/HBCU	SAVANNAH STATE UNIVERS		32.03	81.07	AUGUST, 1985	
11	CONFRRM/OTHER	SW TECHNOLOGY DEV. INST		32.03	106.74	MARCH, 1985	
12	CONFRRM/OTHER	FLORIDA SOLAR ENERGY CE		28.4	80.8	JANUARY, 2000	
12	CONFRRM/OTHER		, . , . ,	44.05	123.07	MAY, 1975	
	ISIS	U OF OR SOLAR ENERGY LAI					
14 15	ISIS	NOAA/ARL NOAA/ARL	HANFORD, CA TALLAHASSEE, FL	36.31	119.63 84.37	MAY, 1995 (2)	
15 16	ISIS	NOAA/ARL NOAA/ARL	ALBUQUERQUE, NI		106.62	JANUARY, 1995 (2)	
17	ISIS	NOAA/ARL NOAA/ARL	BISMARK, ND	46.77	100.02	JANUARY, 1995 (2)	
						JANUARY, 1995 (2)	
18 19	ISIS ISIS	NOAA/ARL	OAK RIDGE, TN	35.96	84.29	JANUARY, 1995 (2)	
20		NOAA/ARL	SALT LAKE CITY, U		111.97	APRIL, 1995 (2)	
	ISIS	NOAA/ARL	STERLING, VA	38.98	77.47	AUGUST, 1995 (2)	
21	ISIS	NOAA/ARL	SEATTLE, WA	47.68	122.25	MARCH, 1995 (2)	
22	ISIS	NOAA/ARL	MADISON, WI	43.13	89.33	JUNE, 1996 (2)	
23	SURFRAD	NOAA/ARL	TABLE MT., CO	40.13	105.24	JULY, 1995 (3,4)	
24	SURFRAD	NOAA/ARL	BONDVILLE, IL	40.05	88.37	APRIL, 1994 (3)	
25	SURFRAD	NOAA/ARL	GOODWIN CREEK,		89.87	DECEMBER, 1994 (
26	SURFRAD	NOAA/ARL	FORT PECK, MT	48.31	105.10	NOVEMBER, 1994 (
27	SURFRAD	NOAA/ARL	DESERT ROCK, NV		116.02	JULY, 1995 (2)	
28	SURFRAD	NOAA/ARL	PENN STATE U, PA		77.93	JUNE, 1998	
29	SRRL	NREL	GOLDEN, CO	39.74	105.18	APRIL, 1985	
30	ARM/SGP CF	USDOE	LAMONT, OK	36.61	97.49	NOVEMBER, 1992 (
31	ARM/NSA	USDOR	BARROW, AK	71.3	-156.68	JULY, 1997	
32	ARM/SGP BSRN	NOAA/ARL	LAMONT, OK	36.61	97.49	JANUARY, 1995	
33	BSRN	NOAA/CMDL	ERIE, CO (3)	40.05	105.01	JANUARY, 1992	
34	BSRN	NOAA/CMDL	BARROW, AK	71.32	156.61	JANUARY, 1992 (3,	
35	IDMP	ASRC, SUNY/ALBANY	ALBANY, NY	42.42	73.51	OCTOBER, 1991	
36	CMDL	NOAA/CMDL	BOULDER, CO (6)	39.99	105.26	1975	
37	CMDL	NOAA/CMDL	MAUNA LOA, HI	19.54	155.58	1976	

NOTES

- (1) Eighteen years of data from previous site in Cape Canaveral, FL; 15 km east of present site
- (2) Earlier data at or near this site available through the National Climatic Data Center, Asheville, NC
- (3) Also designated as a BSRN station
- (4) Boulder Atmospheric Observatory, Located near Erie, CO
- (5) Earlier data available through the CMDL web site
- (6) Located at 325 Broadway (Moved to this location from 30th and Marine St. in 1999)

The National Solar Radiation Database

- Hourly data: 1961-1990
- 239 Stations
- Statistical summaries
- Various collector orientations
- 95% of data are modeled

Solar Radiation Data Grids

- 40-km resolution
- Monthly averages: 1985-1991
- Modeled values
- Various collector orientations

Satellite-derived Solar Data

Source: Richard Perez, SUNY/Albany and Frank Vignola, U of OR

National Wind Atlas

- Produced in 1987 at PNNL
- Approx. 25-km resolution
- Seasonal, annual power classes
- Wind statistics
- Uncertainty analysis

High-Resolution Wind Mapping

	Wind Power Classification								
Wind Power Class	Resource Potential	Wind Power Density at 50 m W/m ²	Wind Speed ^a at 50 m m/s	Wind Speed ^a at 50 m mph					
2 3 4 5 6 7	Marginal Fair Good Excellent Outstanding Superb	200 - 300 300 - 400 400 - 500 500 - 600 600 - 800 800 - 1600 d on a Weibull k va	5.6 - 6.4 6.4 - 7.0 7.0 - 7.5 7.5 - 8.0 8.0 - 8.8 8.8 - 11.1	12.5 - 14.3 14.3 - 15.7 15.7 - 16.8 16.8 - 17.9 17.9 - 19.7 19.7 - 24.8					

Bioenergy Resources

- County level
- Crop residues*
- Forest residues
- MSW

^{*}Corn stover and wheat straw for 30 eastern states

Geothermal Resources

- Source: SMU
- Based on surface temperature flow

Integration into GIS

GIS Supports Analysis of Infrastructure Needed to Access Resources

Examples of Value-Added Products

PV <u>Energy</u> kWh/kW-yr

Effective Load Carrying Capacity

Source: Christy Herig (NREL) and Richard Perez (SUNY/Albany)

Estimating PV Production

Output is monthly energy production and value of energy from grid-connected PV systems for any specified region

Application to Air Quality Mitigation Analysis

Multiple Sensitive Resources: Nitrogen-Saturated Forests, Class I Areas, Acidic Surface Waters in Surveyed Regions

Summary

- Renewable resources have strong temporal and geospatial characteristics
- Air quality mitigation strategies have a strong temporal and geospatial context
- GIS tools can be applied to assess mitigation strategies